• Principles of Automatic Control (A)
    • School of Electronic, Information and Electrical Engineering
    • Credit. 4
    • EI304
    • Enroll
    • WILL BEGIN
    • Fall , 2015
    • 1652
    • Course Description:
    • ( Exchange Programme )
    • As an important course for students majoring in Automation, the goals of the course Principle of Automatic Control Systems are as follows. After complete this course, students will be able to master the basic methods of analysis and design of automatic control systems, including the modeling of the physical systems, analyzing and designing of the control system using time-domain and frequency domain methods.

      This course includes the following 7 chapters.
      Chapter 1: Introduction
      Chapter 2: Mathematical models of control systems
      Chapter 3: Modelling of physical systems
      Chapter 4: Time domain analysis of control systems
      Chapter 5: Root locus method
      Chapter 6: Frequency domain analysis of the control systems
      Chapter 7: Compensation of the control systems
    • Course Syllabus:
    • LEARNING OUTCOME:
      Upon completing this course, a student could
      1. understand the theory and methods in the course and know their applicable scope;
      2. analyze the performance of a control system represented by a mathematical model;
      3. improve the performance of a control system through using the compensation methods learned in the course.

      IMPORTANT TOPICS:
      1. Basic concept of automatic control systems
      Understand the contents of automatic control theory and its classification, master the basic components for feedback control structure as well as the typical testing signals usually used in control systems.

      2. Model of control systems
      Master three basic mathematical models used to describe a control system, which are differential equation, block diagram and signal flow chart. Starting from block diagram, the students could find the gains of the system using Mason Gain Formula.

      3. Modelling of physical systems
      The students should understand the two modeling methods of physical systems, i.e. the modeling through experiment and theoretical modeling respectively.

      4. Time domain analysis of control systems
      The student should master:
      (1). Routh array and the Routh stability criterion method to find the parameters for the critical stability of the system
      (2). Concepts of the steady state error and steady state error constants as well as their calculation methods
      (3). Method to calculate steady state errors aroused by disturbances and the method to attenuate the influence of the disturbances
      (4). conditions under which the higher order system can be simplified to be the second order system and the simplification method.

      5. Root locus
      The students should master the method to plot the root locus and could analyze the characteristics of the control system using root locus.

      6. Frequency response method
      The students should master:
      (1). the definition and the features of the frequency response
      (2). the method to get the frequency response from experiment and transfer function
      (3). the method to plot the Nyquist diagram and Bode diagram
      (4). Nyquist criterion of stability
      (5). definition of minimum phase system and its characteristics
      (6). the method to find the steady state error from bode diagram
      (7). definition of gain margin and the phase margin and their physical meaning
      (8). method to get the margins from Nyquist diagram and bode diagram.

      7. Design of control systems
      The students should master:
      (1). the relationship between the time domain and frequency domain specifications
      (2). phase lead compensation and its influence on the system dynamics
      (3). phase lag compensation and its influence on the system dynamics
      (4). phase lead-lag compensation and its influence on the system dynamics
    • Schedule:
    • Chapter 1: Basic concept of automatic control systems (4 hours)
      Chapter 2: Model of control systems (4 hours)
      Chapter 3: Modelling of physical systems (6 hours)
      Chapter 4: Time domain analysis of control systems (8 hours)
      Chapter 5: Root locus (8 hours)
      Chapter 6: Frequency response method (10 hours)
      Chapter 7: Design of control systems (8 hours)
      Experiment 1: The testing of the step response of the second order system (2 hours)
      Experiment 2: The analysis of the steady-state errors of a control system (2 hours)
      Experiment 3: The testing of the frequency response of a control system (2 hours)
      Experiment 4: The compensation of a feedback control system (2 hours)
  • Reading list
  • Other Materials
  • Discussion
  • Homework download/submit
    • Chen Cailian
    • Read more
    • Female
    • E-mail:
    • cailianchen@sjtu.edu.cn
    • Profile
  • Prerequisite Course:

    Specialized courses for the Major of Automation

  • Textbooks:

    Teaching materials:
    Automatic Control Systems, Benjamin C. Kuo and Farid Golnaraghi, 8th Edition, Higher Educaiton Press, 2003.
    Reference books:
    1. Linear Control System Analysis and Design, John J.D’azzo, Constantine H. Houpis, fourth Edition,Qinghua University Press, 2000.
    2. Linear Control Systems Engineering, Morris Driels, Qinghua University Press, 2000
  • Grading:

    Class participation, Experiment, Assignment: 40%
    Final Examination: 60%
Other courses
  • Communication Principles
    Communication Principles
    The primary objective of this course is: (1) to introduce the basic techniques used in modern communication systems, and (2) to provide fundamental tools and methodologies in analysis and design of th...
    Tao Meixia
    2216
  • Fundamental of Optoelectronics
    Fundamental of Optoelectron...
    Course content: This course includes wave optics basics, waveguides, semiconductor devices, stimulated emission lasers, detectors, modulators, photovoltaic devices, optical sensor, medical photonics...
    Jiang Chun
    2305
  • Fiber Broadband Communications Network
    Fiber Broadband Communicati...
    This course focuses on key optical components, optical transmission systems, optical networks, and application of fiber communication technologies, train the students to understand the basic principle...
    Ma Lin
    1647
  • Digital Signal Processing (B)
    Digital Signal Processing (...
    Review of discrete-time signals and systems, including but not limited to, spectra of discrete-time signals, properties of discrete-time systems, equivalent descriptions of discrete-time systems, real...
    Ma Dianguang
    1374
  • Fundamental of Communication Circuits
    Fundamental of Communicatio...
    “Fundamental of Communication Circuits” is one of the major courses as to undergraduate students in the field of electronic engineering. This course deals with the basic analysis and design of RF circ...
    Su Yikai
    2018
  • Modern Control Theory
    Modern Control Theory
    This is a fundamental course on the modern theory of dynamical systems and control. Fundamental concepts of modern control theory are covered, including systems modeling and solutions in state space, ...
    Bao Qilian
    2200
  • Fundamentals of Multimedia
    Fundamentals of Multimedia
    This course is a restrictively elective course for final year students in Microelectronics, computer engineering and electronic engineering. It covers fundamentals of multimedia theory, multimedia sig...
    Zhu Yongxin
    1473
  • Data Mining Techniques
    Data Mining Techniques
    Data science is the profession of the future, because organizations that are unable to use (big) data in a smart way will not survive. It is not sufficient to focus on data storage and data analysis. ...
    Yuan Bo
    1372
  • Semiconductor Physics and Devices
    Semiconductor Physics and D...
    This course is one of fundamental courses for undergraduate students who are major in electronic science and technology, microelectronics and so on. Through this course, students can learn and master ...
    Zou Weiwen
    1724

Shanghai Jiao Tong University The English Course Catalog | School Counseling:021-34206468-102

沪ICP备05052060 © Shanghai Jiao Tong University all rights reserved. | Address: 800 Dongchuan Road, Shanghai